日韩一二三在线视频播,综合激情一区,欧美日韩亚洲综合在线,国产精品自在在线

實驗方法> 生物信息學(xué)技術(shù)> 數(shù)據(jù)庫>RAMPAGE: Promoter Activity Profiling by Paired‐End Sequencing of 5′‐Complete cDNAs

RAMPAGE: Promoter Activity Profiling by Paired‐End Sequencing of 5′‐Complete cDNAs

關(guān)鍵詞: rampage promoter activity來源: 互聯(lián)網(wǎng)

  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

?

RNA annotation and mapping of promoters for analysis of gene expression (RAMPAGE) is a method that harnesses highly specific sequencing of 5??complete complementary DNAs to identify transcription start sites (TSSs) genome?wide. Although TSS mapping has historically relied on detection of 5??complete cDNAs, current genome?wide approaches typically have limited specificity and provide only scarce information regarding transcript structure. RAMPAGE allows for highly stringent selection of 5??complete molecules, thus allowing base?resolution TSS identification with a high signal?to?noise ratio. Paired?end sequencing of medium?length cDNAs yields transcript structure information that is essential to interpreting the relationship of TSSs to annotated genes and transcripts. As opposed to standard RNA?seq, RAMPAGE explicitly yields accurate and highly reproducible expression level estimates for individual promoters. Moreover, this approach offers a streamlined 2? to 3?day protocol that is optimized for extensive sample multiplexing, and is therefore adapted for large?scale projects. This method has been applied successfully to human and Drosophila samples, and in principle should be applicable to any eukaryotic system. Curr. Protoc. Mol. Biol . 104:25B.11.1?25B.11.16. ? 2013 by John Wiley & Sons, Inc.

Keywords: transcription start site; promoter; RAMPAGE; high?throughput sequencing; expression profiling

? ? ? ? GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Table of Contents

  • Introduction
  • Basic Protocol 1: Preparation of 5′‐Complete cDNAs for Paired‐End Sequencing
  • Support Protocol 1: Preparation of tRNA Stock Solution
  • Basic Protocol 2: Analysis of Sequence Data Following Rampage
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables

? ? ? ? GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Materials

Basic Protocol 1: Preparation of 5′‐Complete cDNAs for Paired‐End Sequencing ? Materials
  • DNaseI‐treated total RNA
  • Terminator (TEX) enzyme with buffer A (Epicentre, cat. no. TER51020)
  • Molecular‐biology grade water (Sigma‐Aldrich, cat. no. 95284‐100ML)
  • Agencourt RNAClean XP kit (Beckman Coulter, cat. no. A63987)
  • 70% (v/v) ethanol, freshly prepared
  • Reverse transcription (RT) primer:
    • 400 ?M rampage_RT:
    • 5′‐TAGTCGAACGAAGGTCTCCGAACCGCTCTTCCGATCT(N) 15
  • Template‐switching oligonucleotides (TSOs, Table 25.11.1 ):
    • 4 mM rampage_TS_** :
    • 5′‐ TAGTCGAACTGAAGGTCTCCAGCANNNNNN rGrGrG
  • SuperScript III reverse transcriptase (Invitrogen, 200 U/?l, cat. no. 18080‐085), with first‐strand buffer and 100 mM DTT
  • 10 mM dNTP mix (Invitrogen, cat. no. 18427‐013)
  • Sorbitol/trehalose solution (see recipe )
  • 5 M betaine (Sigma‐Aldrich, cat. no. B0300‐1VL)
  • qPCR primers:
    • 10 ?M CAGEscan‐erF:
    • 5′‐AATGATACGGCGACCACCGAGATCTACACTAGTCGAACTGAAGG
    • 10 ?M CAGEscan‐erR:
    • 5′‐CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTG AACCGCTCTTCCGATCT
  • Power SYBR Green premix (Applied Biosystems, cat. no. 4367659)
  • Sodium periodate (NaIO 4 , ≥99.8%, Sigma‐Aldrich, cat. no. 311448‐5G)
  • 1 M sodium acetate (NaOAc), pH 4.5: prepare from commercial 3 M NaOAc, pH 5.5 (Ambion, cat. no. AM9740)
  • 40% (v/v) glycerol (Sigma‐Aldrich, cat. no. G5516‐100ML)
  • 1 M Tris‐Cl, pH 7.0 and 8.5: prepare from commercial pH 7.4 stock (Sigma‐Aldrich, cat. no. T2194–100ML) by adjusting pH with HCl or NaOH
  • Biotin hydrazide, long arm (Vector Laboratories, cat. no. SP‐1100)
  • 1 M sodium citrate, pH 6.0 (Sigma‐Aldrich, cat. no. S1804‐500G)
  • 0.5 M EDTA, pH 8.0 (Ambion, cat. no. AM9260G)
  • 5 to 10 U/?l RNase I (Promega, cat. no. M4261)
  • 10 mg/ml MPG streptavidin beads (PureBiotech, cat. no. MSTR0502)
  • E. coli tRNA, DNA and protein free (see protocol 2Support Protocol )
  • Wash buffers 1 to 4 (see reciperecipes )
  • 10 M NaOH (Sigma‐Aldrich, cat. no. 72068‐100ML)
  • Agencourt AMPure XP kit (Beckman Coulter, cat. no. A63881)
  • Ex Taq Hot Start (HS) polymerase with buffer and 2.5 mM dNTP mix (Clontech, cat. no. RR006A)
  • Sequencing primers:
    • rampage_r1 (custom primer):
    • 5′‐ TAGTCGAACTGAAGGTCTCCAGCA
    • SBS8 (standard Illumina primer):
    • 5′‐ CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT
Support Protocol 1: Preparation of tRNA Stock Solution ? Materials
  • E. coli tRNA (type XX, Sigma‐Aldrich, cat. no. R1753‐500UN)
  • RQ1 RNase‐free DNase with buffer (Promega, cat. no. M6101)
  • 0.5 M EDTA, pH 8.0 (Ambion, cat. no. AM9260G)
  • 10% SDS (Sigma‐Aldrich, cat. no. G05030‐500ML‐F)
  • Proteinase K (New England Biolabs, cat. no. P8102S)
  • Agencourt RNAClean XP kit (Beckman Coulter, cat. no. A63987)
  • 70% (v/v) ethanol
  • 1.5‐ml microcentrifuge tube
  • Magnet for bead separation

GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Figures

  • ? Figure 25.B1.1 Preparation of RAMPAGE library. Ribosome‐depleted RNA is reverse‐transcribed with random primers bearing an Illumina adaptor sequence overhang. Under the conditions used, the reverse transcriptase will often add a few non‐templated Cs when it reaches the 5′ end of the template, especially if the template is capped. A template‐switching oligo (TSO), which has three riboguanosines at its 3′ end, can hybridize to the terminal Cs, prompting the enzyme to switch templates and add the TSO sequence to the end of the newly synthesized cDNA. Since the TSO bears the other Illumina adaptor sequence, resulting 5′‐complete cDNAs are amplifiable, whereas non‐5′‐complete molecules are not. The next steps implement the cap‐trapping strategy, in which riboses with free 2′‐ and 3′‐hydroxyl groups are oxidized and biotinylated, and single‐stranded portions of RNA are digested by RNase I. This leaves biotin groups at only the 5′ ends of capped transcripts hybridized to 5′‐complete cDNAs, which can then be recovered on streptavidin‐coated beads. After PCR amplification and size selection, the cDNAs selected by these two orthogonal strategies can be directly sequenced on Illumina platforms.
    View Image

Videos

Literature Cited

Literature Cited
?? Batut, P., Dobin, A., Plessy, C., Carninci, P., and Gingeras, T.R. 2013. High‐fidelity promoter profiling reveals widespread alternative promoter usage and transposon‐driven developmental gene expression. Genome Res. 23:169‐180.
?? Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57:289‐300.
?? Carninci, P., Kvam, C., Kitamura, A., Ohsumi, T., Okazaki, Y., Itoh, M., Kamiya, M., Shibata, K., Sasaki, N., Izawa, M., Muramatsu, M., Hayashizaki, Y., and Schneider, C. 1996. High‐efficiency full‐length cDNA cloning by biotinylated CAP trapper. Genomics 37:327‐ 336.
?? Carninci, P., Sandelin, A., Lenhard, B., Katayama, S., Shimokawa, K., Ponjavic, J., Semple, C.A.M., Taylor, M.S., Engstrom, P.G., Frith, M.C., Forrest, A.R.R., Alkema, W.B., Tan, S.L., Plessy, C., Kodzius, R., Ravasi, T., Kasukawa, T., Fukuda, S., Kanamori‐Katayama, M., Kitazume, Y., Kawaji, H., Kai, C., Nakamura, M., Konno, H., Nakano, K., Mottagui‐Tabar, S., Arner, P., Chesi, A., Gustincich, S., Persichetti, F., Suzuki, H., Grimmond, S.M., Wells, C.A., Orlando, V., Wahlestedt, C., Liu, E.T., Harbers, M., Kawai, J., Bajic, V.B., Hume, D.A., and Hayashizaki, Y. 2006. Genome‐wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38:626‐635.
?? Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue, C., Marinov, G.K., Khatun, J., Williams, B.A., Zaleski, C., Rozowsky, J., Roder, M., Kokocinski, F., Abdelhamid, R.F., Alioto, T., Antoshechkin, I., Baer, M.T., Bar, N.S., Batut, P., Bell, K., Bell, I., Chakrabortty, S., Chen, X., Chrast, J., Curado, J., Derrien, T., Drenkow, J., Dumais, E., Dumais, J., Duttagupta, R., Falconnet, E., Fastuca, M., Fejes‐Toth, K., Ferreira, P., Foissac, S., Fullwood, M.J., Gao, H., Gonzalez, D., Gordon, A., Gunawardena, H., Howald, C., Jha, S., Johnson, R., Kapranov, P., King, B., Kingswood, C., Luo, O.J., Park, E., Persaud, K., Preall, J.B., Ribeca, P., Risk, B., Robyr, D., Sammeth, M., Schaffer, L., See, L.H., Shahab, A., Skancke, J., Suzuki, A.M., Takahashi, H., Tilgner, H., Trout, D., Walters, N., Wang, H., Wrobel, J., Yu, Y., Ruan, X., Hayashizaki, Y., Harrow, J., Gerstein, M., Hubbard, T., Reymond, A., Antonarakis, S.E., Hannon, G., Giddings, M.C., Ruan, Y., Wold, B., Carninci, P., Guigo, R., and Gingeras, T.R. 2012. Landscape of transcription in human cells. Nature 489:101‐108.
?? Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. 2012. STAR: Ultrafast universal RNA‐seq aligner. Bioinformatics 29:15‐21.
?? Hirzmann, J., Luo, D., Hahnen, J., and Hobom, G. 1993. Determination of messenger‐RNA 5′‐ends by reverse transcription of the cap structure. Nucleic Acids Res. 21:3597‐3598.
?? Kapranov, P., Willingham, A.T., and Gingeras, T.R. 2007. Genome‐wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8:413‐423.
?? Ni, T., Corcoran, D.L., Rach, E.A., Song, S., Spana, E.P., Gao, Y., Ohler, U., and Zhu, J. 2010. A paired‐end sequencing strategy to map the complex landscape of transcription initiation. Nat. Methods. 7:521‐527.
?? Plessy, C., Bertin, N., Takahashi, H., Simone, R., Salimullah, M., Lassmann, T., Vitezic, M., Severin, J., Olivarius, S., Lazarevic, D., Hornig, N., Orlando, V., Bell, I., Gao, H., Dumais, J., Kapranov, P., Wang, H., Davis, C.A., Gingeras, T.R., Kawai, J., Daub, C.O., Hayashizaki, Y., Gustincich, S., and Carninci, P. 2010. Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat. Methods. 7:528‐534.
?? Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L. 2010. Transcript assembly and quantification by RNA‐Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28:511‐515.
?? Valen, E., Pascarella, G., Chalk, A., Maeda, N., Kojima, M., Kawazu, C., Murata, M., Nishiyori, H., Lazarevic, D., Motti, D., Marstrand, T.T., Tang, M.H.E., Zhao, X., Krogh, A., Winther, O., Arakawa, T., Kawai, J., Wells, C., Daub, C., Harbers, M., Hayashizaki, Y., Gustincich, S., Sandelin, A., and Carninci, P. 2009. Genome‐wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Res. 19:255‐265.
?? Wang, Z., Gerstein, M., and Snyder, M. 2009. RNA‐Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57‐63.
?? Zhu, Y.Y., Machleder, E.M., Chenchik, A., Li, R. and Siebert, P.D. 2001. Reverse transcriptase template switching: A SMART approach for full‐length cDNA library construction. Biotechniques 30:892‐897.

GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library ?

推薦方法

Copyright ?2007 ANTPedia, All Rights Reserved

京ICP備07018254號 京公網(wǎng)安備1101085018 電信與信息服務(wù)業(yè)務(wù)經(jīng)營許可證:京ICP證110310號

日韩一二三在线视频播,综合激情一区,欧美日韩亚洲综合在线,国产精品自在在线
午夜精彩视频在线观看不卡| 欧美在线观看禁18| 色诱亚洲精品久久久久久| 国产日韩欧美在线一区| 亚洲精品在线观| 国产一区二区三区香蕉| 在线视频欧美区| 成人免费视频视频| 成人黄色免费短视频| 亚洲天堂中文字幕| 99在线精品一区二区三区| 国产在线一区二区综合免费视频| 国产日韩欧美不卡| 在线观看日韩一区| 成人教育av在线| 26uuu精品一区二区| 午夜精品福利一区二区蜜股av| 久久综合九色综合欧美就去吻| 久久美女艺术照精彩视频福利播放| 欧美成人r级一区二区三区| 高清av一区二区| 91麻豆精品国产91| 国产精品1024久久| 亚洲婷婷综合色高清在线| 日韩av不卡一区二区| 欧美猛男gaygay网站| 美女mm1313爽爽久久久蜜臀| eeuss国产一区二区三区| 美女视频网站久久| 韩国理伦片一区二区三区在线播放| 欧美三级电影网站| 国产传媒欧美日韩成人| 91在线视频网址| 亚洲一区二区三区视频在线播放| 国产精品免费aⅴ片在线观看| 亚洲一区二区欧美激情| 亚洲精品日产精品乱码不卡| 国产原创一区二区| 加勒比av一区二区| 欧美成va人片在线观看| 久久国产日韩欧美精品| 日韩av成人高清| 日一区二区三区| 欧美经典三级视频一区二区三区| 2014亚洲片线观看视频免费| 久久在线观看免费| 色婷婷国产精品综合在线观看| 日本不卡在线视频| 欧美一级欧美三级在线观看| 久久91精品国产91久久小草| 亚洲午夜久久久久中文字幕久| 久久精品亚洲乱码伦伦中文| 国产69精品一区二区亚洲孕妇| 午夜国产不卡在线观看视频| 在线免费观看一区| 国产精品不卡视频| 欧美一区二区日韩一区二区| 日本精品一区二区三区四区的功能| 99视频热这里只有精品免费| www.99精品| 成人免费视频免费观看| 国产一区二区三区观看| 国产精品久久久久久久久晋中| 国产馆精品极品| 久久色视频免费观看| 国产成人在线视频网址| 日韩一级视频免费观看在线| 日韩美女视频一区二区| 免费观看久久久4p| 亚洲三级理论片| 午夜在线电影亚洲一区| 欧美日韩一级视频| 在线一区二区三区做爰视频网站| 亚洲成人综合视频| 色偷偷久久人人79超碰人人澡| 91行情网站电视在线观看高清版| 国内精品伊人久久久久av一坑| 欧美色爱综合网| 激情偷乱视频一区二区三区| 蜜桃久久久久久| 久久日韩精品一区二区五区| 青青草一区二区三区| 精品国产一区二区三区四区四| 久久亚洲私人国产精品va媚药| 亚洲综合色自拍一区| 五月天精品一区二区三区| 国产精品美女一区二区在线观看| 亚洲国产裸拍裸体视频在线观看乱了| 蜜臀av国产精品久久久久| 亚洲高清免费一级二级三级| 精品成人一区二区三区四区| 日韩免费视频一区| 成人精品一区二区三区中文字幕| 综合中文字幕亚洲| 欧美日韩一区二区三区视频| 久久精品久久久精品美女| 17c精品麻豆一区二区免费| 日韩一区在线看| ●精品国产综合乱码久久久久| 亚洲天堂免费在线观看视频| 国产成人aaaa| 亚洲成a人v欧美综合天堂下载| 国产毛片精品一区| 一区二区三区在线播| 国产在线不卡一卡二卡三卡四卡| 日韩精品一区二区三区中文不卡| 婷婷久久综合九色综合绿巨人| 激情深爱一区二区| 久久99精品久久久久久久久久久久| 欧美mv和日韩mv的网站| 激情成人午夜视频| 日韩欧美的一区二区| 成人免费毛片a| 国产精品自拍在线| 亚洲色图视频网| 日韩av中文字幕一区二区| 久久精品亚洲一区二区三区浴池| 久久国产精品一区二区| 色婷婷久久综合| 国产精品久久久爽爽爽麻豆色哟哟| 亚洲午夜私人影院| 91国偷自产一区二区开放时间| 91麻豆精品91久久久久久清纯| 亚洲美女视频在线| 青青草原综合久久大伊人精品优势| 国产一区二区三区免费看| 国产精品视频一二| 亚洲欧美日本韩国| 亚洲欧洲国产日本综合| 中文字幕一区二区日韩精品绯色| 奇米影视一区二区三区小说| 国产999精品久久久久久| 2欧美一区二区三区在线观看视频| 一区二区三区日韩欧美| 久久久亚洲国产美女国产盗摄| 精品久久国产97色综合| 国产成人鲁色资源国产91色综| 日韩限制级电影在线观看| 在线观看精品一区| 国产福利一区二区三区| 国产精品免费丝袜| 欧美一激情一区二区三区| 丝袜亚洲另类欧美综合| 自拍偷拍亚洲激情| 欧美视频中文字幕| 在线成人av影院| 一区二区三区中文在线观看| 欧美一区二区三区精品| 欧美二区三区的天堂| 4438成人网| 欧美mv和日韩mv的网站| 中文字幕一区二区不卡| 欧美性受极品xxxx喷水| 午夜伊人狠狠久久| 五月天中文字幕一区二区| 亚洲aaa精品| 奇米一区二区三区| 国内精品第一页| 中文字幕一区二区三区乱码在线| 精品三级在线观看| 亚洲福利一区二区三区| 色综合天天综合在线视频| 一区二区中文字幕在线| 日韩三级电影网址| 一区二区三区自拍| 国产激情一区二区三区四区| 欧美一区二区三区视频| 精品国产一区二区亚洲人成毛片| 日本乱人伦aⅴ精品| 美洲天堂一区二卡三卡四卡视频| 99久久99久久精品免费看蜜桃| 亚洲精品日韩专区silk| 亚洲国产裸拍裸体视频在线观看乱了| 精品在线播放午夜| 欧美大胆一级视频| 欧美三级韩国三级日本三斤| 久久精品一区二区三区四区| 高清在线观看日韩| 精品国产乱码久久久久久蜜臀| 国产精品久久久久久久第一福利| 国产成人精品午夜视频免费| 国产一区二区三区国产| 日韩一区二区三区观看| 国产成人8x视频一区二区| 国产jizzjizz一区二区| 日韩视频123| 国产精品久久毛片a| 日本欧美肥老太交大片| 26uuu国产电影一区二区| 日韩国产欧美一区二区三区| 亚洲欧洲av一区二区三区久久| 欧美日韩一区不卡| 欧美区一区二区三区| 亚洲动漫第一页| 一区二区久久久久| 国产精品毛片大码女人| 国产高清不卡二三区| 欧美精品一区二| 欧美一区二区三区四区视频| 91福利在线免费观看|